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The objectives and characteristics of the relational approach to the management of large 
formatted and integrated data bases are briefly reviewed. We then consider recent 
advances in the following topics: normalization of the relational model; data base 
sublanguages for programmers and non-programmers; the problem of superimposition of 
multiple views on top of the relational model; and data exchange policies in a network 
of mutually remote data bases. Listed in the conclusion are some areas of investigation 
in relational technology requiring immediate attack and some that are less urgent. 

Disclaimer: The opinions expressed in this paper 
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1. OBJECTIVES 

In 1968 it was possible to observe two mutually 
incompatible trends in formatted data base systems: 
on the one hand, the tendency of systems designers 
to expose users of their systems to more and more 
complicated types of data structure and, on the 
other hand, the increasing interest in establishing 
integrated data bases with a much higher degree of 
data inter-relatedness and on-line interactive use 
by non-programmers. At about the same time, it 
was becoming clear that users were spending too 
much in manpower and money on re-codlng and 
re-testing application programs which had previously 
worked satisfactorily but which had become logically 
impaired by data base growth or by changes in the 
stored data representation for various reasons (the 
so-called data independence problem). 

In a series of papers [1-5] we proposed a specific 
relational model with (we believe) a novel set of 
operators and normal forms. For prior applications 
of relations, see references cited in [1,2]. The 
objectives of this work are: 

I. to provide a high degree of data 
independence; 

2. to provide a community view of the data 
of spartan simplicity, so that a wide 
variety of users in an enterprise (ranging 
from the most computer-naive to the most 
computer-sophisticated) can interact with 
a common model (while not prohibiting 
superimposed user views for specialized 
purposes); 

3. to simplify the potentially formidable 
job of the data base administrator; 

4. to introduce a theoretical foundation 
(albeit modest) into data base management 
(a field sadly lacking in solid principles 
and guidelines); 

5. to merge the fact retrieval and file 
management fields in preparation for the 
addition at a later time of inferential 
services in the commercial world; 

6. to lift data-based application programming 
to a new level -- a level in which sets 
(and more specifically relations) are 
treated as operands instead of being 
processed element by element. 

In connection with the second objective, it is 
important to remember that data bases are being 
established for the benefit of end users, and not 

for the application programmers who act as 
middle-men for today's data processing needs. Fig. 
i displays the author's somewhat conservative 
assumptions about future trends in data base 
interaction. For a description of the casual user 
and a subsystem to support his interaction, see 
[6]. 
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'90s 

Fig. 1 Anticipated Use of Large Integrated Data Bases 

2. RELATIONAL MODEL 

In the relational approach there exists an interface 
at which the totality of formatted data in a data 
base can be viewed as a finite collection of 

non-hierarchic relations of assorted degrees defined 
on a given collection of simple domains (domains 
whose elements are non-decomposable as far as the 
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data base management system is concerned). The 
extension (or instantaneous value) of each relation 
of degree n is a simple table with n columns and 
no duplicate rows. Accordingly, within each 
relation each tuple (or row) is uniquely 
identifiable by its content alone. 

The extension is, of course, subject to change with 
time as tuples are inserted, modified, and 
deleted. While there is no prohibition against 
ordering the tuples of any relation in the user's 
view, there is a clear advantage in requiring that 
such an ordering be entirely re-constructible from 
the table values, since it is then possible to 
derive and retrieve every meaningful relation by 
application of a simple collection of commands 
(e.g., the operators of the n-ary relational 
algebra), without programming a tuple-by-tuple 
search. 

The intension (or meaning) is much less subject to 
change than the extension -- and for many purposes 
can be treated as if it were time-independent. We 
include in the intensional part of the relational 
model the declaration of domains and relations, 
units and range information for each domain, 
information as to the applicability of comparisons 
based on LESS THAN, together with a list of all 
the integrity constraints. These constraints may 
be represented by procedures, by parameters for 
procedures, or, in some cases, by query language 
expressions [18]. 

We may divide the constraints into two types: those 
that define valid states of the data (we call these 
static integrity constraints) and those that define 
side-effects of various kinds of transactions, 
particularly insertions and deletions (d~namic 
integrit[ constraints). The static integrity 
constraints include all of the elementary functional 
dependencies upon which the normal forms are based 
[3,4,11], plus designations of primary keys. Also 
included in the static constraints are set inclusion 
declarations (for example, the set of suppliers 
who are supplying parts must be a subset of the 
set of suppliers in the supplier-describing 
relation). 

An important and distinctive feature of the 
relational model is the separation of integrity 
and security constraints from the logical data 
structure. We may accordingly change the 
constraints without changing the data structure 
and possibly impacting application programs and 
terminal activities. 

A variety of representations can be used for storing 
the data, so long as these representations are 
isomorphic to the relational model with respect to 
insertion, update, and deletion. The application 
programs, of course, do not refer to the storage 
representations directly. They are written to 
operate upon the community view or some superimposed 
specialized view (see section 5 below). 

The fundamental differences between the data base 
relational model and the network model (as 
exemplified by DBTG [23] are discussed in [7,8]. 

3. NORMALIZATION OF RELATIONS 

In [3,4] six aims of normalization of relations 
are listed. Perhaps the two most important are: 
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i. To reduce the need for restructuring the 
collection of relations as new types of 
data are introduced, and thus increase 
the life span of application programs; 

2. To reduce the incidence of undesirable 
insertion, update, and deletion anomalies. 

The concepts of full and transitive dependence of 
attributes upon one another were introduced, and 
the second and third normal forms were defined. 

In [12] Kent proposed improvements to the 
definitions of the second and third normal forms. 
These improvements remove the somewhat arbitrary 
distinction drawn in [3,4] between prime and 
non-prime attributes. More recently, Boyce and 
Codd developed the following definition: 

A relation R is in third normal form if it is 
in first normal form and, for every attribute 
collection C of R, if any attribute not in C 
is functionally dependent on C, then all 
attributes in R are functionally dependent on 

C. 

While this definition is logically equivalent to 
that of Kent, it has the advantage of avoiding 
reference to the concepts of primary key, full 
dependence, and transitive dependence. As a 
consequence, the normalizing algorithm is 

significantly simplified. 

Now, even though each relation in a collection of 
relations may be in third normal form, it does not 
follow that the collection itself is in optimal 
third normal form. For example, consider the 
collection consisting of two relations R(~,B) and 
S(A,C), where in each case the primary key is 
underlined as usual. Suppose R is non-loss joinable 
with S on A. The join T of R with S on A clearly 
possesses the functional dependencies of B on A 
and C on A, but it might also possess the dependency 
of C on B. Let us suppose it does have this 
additional dependency. Then, the given collection 
of relations can be replaced by the more optimal 
collection consisting of the projection T(_B,C) 
together with the relation R. This example shows 
the need to consider not only the functional 
dependencies within the given relations but also 
the dependencies within all the non-loss joins of 
these relations, when attempting to cast a given 
collection in optima] third normal form. 

4. DATA SUBLANGUAGES 

For expository purposes, we shall distinguish five 
kinds of language, all of which provide independence 
of programs and terminal activities from the 
physical (or stored) representation of the data. 
These kinds are: element-by-element; algebraic; 
mapping-oriented; relational calculus; and natural 
language (e.g., English). 

4. i Element-by-Element Data Sublan~uageS 

A primitive procedural interface for 
element-by-element manipulation of a collection of 
n-ary relations is described in detail in [13]. 
The 14 basic commands provide for the creation and 
dropping of relations, the insertion, modification, 
movement, and deletion of tuples, the retrieval of 
tuples via system-generated identifiers, and 
relation-scanning operations that permit some degree 
of optimization of search in the implementation. 
The creation and dropping of inversions are under 



programmer control at this level, because this 
interface is intended to be used to interpret higher 
level data sublanguages efficiently. Maintenance 
of these inversions is, however, a system 
responsibility, since it can be handled more 
efficiently below this interface than above it. 

Generally speaking, when making a query on a remote 
data base, one would prefer not to have to request 
elements one at a time in a low level language. 
This is one of the reasons for investigating the 
following data sublanguages. 

4.2 Alsebraic Data Sublanguages 

At the algebraic level, retrieval of data is viewed 
as the formation of a new relation from the data 
base relations by use of some operation of the 
algebra. It should be stressed that these 
operations act upon entire relations as their 
operands. As pointed out in [5,14] these operations 
provide a powerful and concise vehicle for 
expressing queries, and they are comparatively easy 
to implement efficiently in the context of the 
relational model. Unfortunately, these operators 
cannot be readily implemented in the CODASYL DBTG 
framework, because its owner-coupled set occurrences 
do not behave as mathematical sets [7]. 

Examples of implementations of the algebraic level 
interface on the relational model are found in 
MACAIMS [15], RDMS [28], and the Peterlee IS/I 
[16]. The last system has an interesting variant 
of the join operator, one that is oriented both to 
convenience of use and efficiency of implementation. 

4.3 Mapping-Oriented Data a Sublanguages 

Every binary relation R (no matter whether it is 
one-many, many-one, or many-many) can be regarded 
as a set-valued function Which maps each element 
of the first domain of R into the set of all 
associated elements in the second domain. There 
is also a similarly defined function that maps 
elements in the second domain into sets of elements 
in the first. This idea can obviously be extended 
to relations of higher degree. Boyce, Chamberlin, 
King, and Hammer have developed a relationally 
complete data sublanguage [17] based on this notion. 
An English-oriented version of this sublanguage 
named SEQUEL [18,]9] appears to be a strong 
candidate for use by both programmers and 
non-programmers who are willing to tolerate a small 
amount of training. 

4.4 Relational Calculus Data Sublanguages 

A data sublanguage named ALPHA based on the 
relational calculus for non-hierarchic n-ary 
relations was described in [2], its foundation was 
defined in [5], and a syntax was specified in [6]. 
Tactics for efficient interpretation were introduced 
in [20] by Palermo, and are also discussed in [21] 
by Rothnie. In each case a small scale experimental 
implementation was developed. 

The relational calculus type of interface has the 
advantage that the user specifies what he wants 
and avoids specifying how tbe system should retrieve 
the information, thus leaving the system with the 
complete responsibility for searching efficiency. 
Another advantage is its conciseness. In [29] 
Frank and Sibley (selecting their own example) 
developed a DBTG schema for a sample data base, 
together with a subschema and COBOL-DBTG program 

i? 

for a sample application. In [7] we show that 
conversion of the DBTG schema to a relational schema 
results in an 80 percent reduction in the number 
of lines of code for the schema itself; and 
conversion of the COBOL-DBTG program to a 
corresponding COBOL-ALPHA program results in a 90 
percent reduction in the number of lines of code 
for the application. 

4.5 Natural Language for Non-Programmers 

By natural language (in this paper) we mean any 
language in use today for oral conversation between 
people, providing it has tokens that are acceptable 
to computers. We shall use English as an example. 
Much work has been done in developing translators 
and interpreters for queries stated in English. 
Almost all of these systems provide one-way 
translation only (from English to some 
computer-oriented language). The REL system [26] 
at the California Institute of Technology and the 
CONVERSE system [27] at System Development 
Corporation in Santa Monica are examples. Such 
systems are based on the (unstated) assumption that 
the user knows what he wants and knows how to 
express his needs perfectly in system-comprehensible 
English. This assumption may be viable for analysts 
and researchers who have a clear job-incentive to 
learn to live with the system's restrictions. Such 
a learning overhead with the patience it implies 
is incompatible with casual interaction by 
non-programmers. 

In [6] the author proposed seven steps to arrive 
at viable support for casual interaction. These 

steps are: 

I. Select a simple data model 
2. Select a high level logic as internal 

target 
3. Introduce clarification dialog of bounded 

scope 
4. Introduce system re-statement of user's 

query 
5. Separate query formulation from data base 

search 
6. Employ multiple choice interrogation as 

fall-back 
7. Provide a definitional capability. 

The author is implementing an experimental query 
formulation subsystem called RENDEZVOUS that 
embodies these seven steps (see Fig. 2). 

5. SUPERIMPOSITION OF MULTIPLE VIEWS 

Both Guide-Share [22] and the CODASYL Data Base 
Task Group [23] call for multiple views of the 
data, so that different application programs can 
interact with distinct views. Date and Hopewell 
[9,10] are more specific on this topic. None of 
these reports places clear limits on the range of 
application views that are permissible or required 
for a given system logical view (or community 
schema). For application programs that do more 
than merely read the data, there are theoretical 
limitations which must be observed if data base 
integrity (including consistency of all permitted 
views) is to be maintained. 

To illustrate the kind of difficulty one encounters, 
suppose that the community schema includes two 
relations R(A,B) and S(B,C). Suppose that a user 
requests T(A,B,C) as his schema, where T is defined 
to be the natural join of R with S on the common 
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1. User makes initial statement of his query (unrestricted English) 

2. System interrogates userabout his query (to obtain information 
which is missing or hidden in language the system does not 
understand, and to resolve ambiguities) 

3. User responds to system interrogation 

4. System provides a re-statement of user's query in system 
English (in a very precise way, based on the n-ary relational 
calculus) 

to the relations R and S, whereas R and S together 
are deletion-viable with respect to T). 

Insertion viability can be defined analogously to 
deletion viability. If we assume, as usual, that 
primary keys may not have undefined values whereas 
other attributes may, deletion viability of schema 
U with respect to schema V does not imply insertion 
viability (consider the case in which U is a 
projection of a relation R in schema V on non-key 
attributes of R). On the other hand, in the absence 
of dynamic integrity constraints triggered by 
deletion operations, insertion viability does imply 
deletion viability. 

There has been much discussion [9,18] of supporting 
tree structured schemata on top of the relational 
model. The join operation is a vital part (but 
not the whole story) in the formation of tree 
structures from non-hierarchic relations. Thus, 
the problem of supporting tree structures with 
integrity must take into account the problem of 
supporting joins with integrity. A systematic 
investigation is needed to determine for any given 
class of non-hierarchic relations and associated 
integrity constraints what is the class of user 
views that can be supported with integrity. 

Fig. 2 RENDEZVOUS Subsystem 

attribute B. Further, suppose that at some instant 
R and S have the following tabulations: 

R (A B ) S ( B C ) 
s i i u 

t i i v 
. . . .  . . . .  

Then, the tabulation of T must be: 

r (ABC) 
s i u 
s iv 
t I u 
t iv 
. . ° ° .  

Now, suppose the user who has T in his schema 
desires to delete just one row -- specifically, 
the triple (t,l,v). If he were allowed to do this, 
the relation T would become a relation that is not 
the join of any pair of relations whatsoever. 
Another way of expressing this is that there is no 
way of reflecting this deletion from T by means of 
corresponding deletions from R and S. In [i] we 
called the element 1 in domain B a ~oint of 
ambiguity in the join of R with S on B. A simple 
and sufficient time-independent condition under 
which a point of ambiguity cannot arise is that 
either A is functionally dependent on B in R or C 
is functionally dependent on B in S. 

Informally, we shall say that schema U is 
deletion-viable with respect to schema V if all 
deletions from tabulations of U can be faithfully 
simulated by deletions from corresponding 
tabulations of V. Of course, all applicable 
functional dependencies must be respected. It is 
not difficult to make this definition more formal. 
If U is deletion-viable with respect to V, this 
does not imply that V is deletion-viable with 
respect to U (consider the case cited above, in 
which the join T is not deletion-viable with respect 

6. DATA EXCHANGE 

Consider a network of computers with one or more 
data bases at each node. Suppose a common 
requirement is that of transmitting collections of 
formatted data from one node to another. Let us 
focus upon the question of how these data 
collections are represented in storage at each node 
and how they are represented on the communication 
lines (ignoring, however, the representation of 
atomic items). 

There are four principal policies that can be 
adopted to ensure that a collection transmitted 
from one node is acceptable and interpretable at 
the receiving node. The first policy is a very 
rigid one, namely that all nodes are required to 
use the same data base management system. This 
guarantees compatibility, but has the disadvantage 
that no node may make improvements or changes in 
the class of data representations supported by 
their node without all other nodes simultaneously 
introducing the very same changes. 

The second policy is the opposite extreme, namely 
that of permitting free choice at each node of the 
stored data representations used at that node and 
also on the communication lines. It is then the 
responsibility of any two parties that want to 
communicate with one another to develop the 
necessary translation programs to make their 
bilateral communication possible. The disadvantage 
of this approach is that many such programs will 
become necessary sooner or later. 

The third policy is that of developing a single 
"general" translator to replace the bilateral 
translators of the second policy. An identical 
copy of this network standard translator would be 
mandatory at each node. As Dennis has shown [24], 
there is no truly general translator that can handle 
all possible data representations. Thus, we must 
ask: "What happens if a new (and possibly very 
efficient) physical representation and access method 
are discovered which are beyond the capability of 
the standard translator?". Remember that we are 
only just beginning to establish a theoretical 
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basis for physical representations of data, and 
therefore we can expect significant new developments 
in this area. The third policy would have a marked 
deterrent effect upon the introduction of a new 
data representation at some node, because of the 
need to obtain the consent of all other nodes to 
the required modification of the network standard 
translator. 

The fourth policy is that of adopting a single 
network standard data representation for 
communication purposes (as proposed in [i], page 
381). No constraints are placed upon the stored 
data representations adopted at any node. The only 
requirement is that each node develop its own 
translator to and from the standard communication 
representation for whatever stored representations 
are adopted at that node. Thus, changes in the 
stored representations at any node can be made 
without negotiation with other nodes. Third normal 
form relations [3] provide a rather simple basis 
for such a data communication standard within a 
network. One group that is investigating this 
approach is at the University of Michigan [25]. 

7. NEEDED INVESTIGATIONS 

In this author's opinion, the most urgently needed 
investigations are: 

i. development of concurrency control 
techniques specifically geared to the 
relational model; 

2. ascertaining the performance that is 
attainable when the relational approach 
is applied to a large scale data base (at 
least one billion bytes) with concurrent 
access and modification; 

3. development of superimposition theory (see 
section 5 above); 

4. development of storage, access, and 
modification theory for collections of 
non-hierarchic n-ary relations; 

5. demonstration of viability of natural 
language query formulation subsystems of 
the RENDEZVOUS type. 

Inferential services and support for Zadeh-fuzzy 
concepts represent less urgently needed, but still 
necessary, areas of investigation. 
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